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Introduction: 

The long-term goal of our research project is to develop a tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL)-based therapy for prostate cancer. This translational research project is based on 
the observation that prostate cancer begins as an androgen-dependent tumor and undergoes clinical 
regression in response to pharmacological or surgical strategies that reduce testosterone concentration.  
While this treatment approach is effective initially in controlling the prostate cancer, these tumors 
ultimately fail to respond to androgen blockade.  The failure of androgen ablation therapy leads to a 
hormone-refractory state of the disease.  Androgen receptor mutations (6-10%) and amplifications (20-
30%) may explain relapse in some patients (Bartlett et al., 2005).  However, HER-2/neu overexpression 
has been reported in up to 67% of patients with hormone-refractory prostate carcinoma (Osman et al., 
2001).  Several studies have shown that overexpression of HER-2/neu is correlated with shortened patient 
survival, increased metastatic potential, and poor prognosis.  This is probably because HER-2/neu 
promotes tumor survival through the PI(3)K-Akt signal transduction pathway.  In this final report, we 
examined whether blockade of HER-2/neu-mediated tumor cell survival signals by quercetin, a common 
bioflavonoid present in many fruits and vegetables such as onions and apples, can sensitize prostate 
cancers to TRAIL-induced apoptotic death.  The inhibition of HER-2/neu-mediated survival signals 
results in prevention of regrowth of prostate cancer.  

The natural product quercetin (3,5,7,3’,4’-pentahydroxyflavone), which is orally bioavailable, is a 
flavonoid found in many fruits and vegetables.  Quercetin and its metabolites are potent antioxidants 
which have oxygen radical scavenging properties and inhibit xanthine oxidase and lipid peroxidation in 
vitro (Bors et al., 1994; Da Silva et al., 1998; Vulcain et al., 2005). Previous research has also shown that 
quercetin has anti-tumor, anti-inflammatory, anti-allergic, and anti-viral activities (Middleton, Jr. and 
Kandaswami, 1993; Kandaswami and Middleton, Jr., 1994; Wang, 2000; Nair et al., 2002; Suzuki et al., 
2002).  However, the molecular mechanisms underlying the anti-tumor effects are generally unknown. 
Several researchers have reported that quercetin inhibits PI(3)K with an IC50 of 3.8 μM (Matter et al., 
1992; Yoshizumi et al., 2001).  We examined whether the anti-tumor effects of quercetin, as manifested 
by its ability to selectively suppress colony formation by prostate cancer cells in vitro, are mediated by its 
ability to inhibit the PI(3)K-Akt signal transduction pathway.   

Several researchers have observed a significant increase in HER-2/neu expression after the 
progression from hormone-dependent to hormone-independent disease (Osman et al., 2001; Signoretti et 
al., 2000).  The expression of HER-2/neu is correlated with increased metastatic potential, poor prognosis 
in prostate cancer, and resistance to apoptosis (Signoretti et al., 2000).  HER-2/neu (also known as ErbB2) 
is a gene in the epidermal growth factor receptor (EGFR) family (HER-1, HER-2, HER-3, HER-4).  In 
many physiological contexts signaling through the HERs is induced by the formation of HER 
heterodimers, whose cytoplasmic tails are phosphorylated and coupled to SH2-containing proteins to 
initiate a cellular signaling pathway (Carraway and Cantley, 1994; Olayioye et al., 1998).  The HER-
2/neu gene encodes a 185 kDa transmembrane receptor tyrosine kinase.  Unlike the other epidermal 
growth factor receptors (EGFR), HER-2/neu has an intrinsic tyrosine kinase activity that activates PI(3)K 
in the absence of ligand (Fruman et al., 1998; Figure 1).  PI(3)K consists of a regulatory subunit (p85) that 
binds to an activated growth factor/cytokine receptor and undergoes phosphorylation, which results in the 
activation of its catalytic subunit (p110) (Rodriguez-Viciana et al., 1996).  PI(3)K phosphorylates 
phosphoinositides at the 3’-position of the inositol ring, and its major lipid product is phosphatidylinositol 
3,4,5-triphosphate (PIP3) (Rameh and Cantley, 1999).  PIP3 facilitates the recruitment of Akt to the 
plasma membrane through binding with the pleckstrin homology (PH) domain of Akt (Rameh and 
Cantley, 1999).  Akt is activated by phosphoinositide-dependent kinase-1 (PDK1) through 
phosphorylation at threonine 308 and serine 473 (Alessi et al., 1997).  A number of pro-apoptotic proteins 
have been identified as direct Akt substrates, including BAD, caspase-9, and Forkhead transcription 
factors (Brunet et al., 1999; Cardone et al., 1998; Cross et al., 1995; Datta et al., 1997; del Peso et al., 
1997; Hetman et al., 2000; Zhao et al., 2004).  The pro-apoptotic function of these molecules is 
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suppressed upon phosphorylation by Akt.  Previous studies also show that Akt induces the degradation of 
IκB by promoting IKKα activity and subsequently stimulating the nuclear translocation of NF-κB (Ozes 
et al., 1999).  Our lab (Nam et al., 2002) and Panka et al. (2001) reported that the PI(3)K-Akt-NF-κB 
pathway may regulate the expression of FLICE-inhibitory protein (FLIP), an anti-apoptotic molecule.  We 
identified the mechanisms by which HER-2/neu affects TRAIL-induced apoptotic death.   

TRAIL is a type II integral membrane protein belonging to the TNF family.  TRAIL is a 281-amino 
acid protein, related most closely to a Fas/APO-1 ligand.  Like Fas ligand (FasL) and TNF, the C-terminal 
extracellular region of TRAIL (amino acids 114-281) exhibits a homotrimeric subunit structure (Pitti et 
al., 1996).  However, unlike FasL and TNF, several studies reveal that TRAIL induces apoptosis in a wide 
variety of tumor cells, but does not cause toxicity to most normal cells (Ashkenazi and Dixit, 1998).  
Several studies also reveal that TRAIL, which is constitutively expressed on murine natural killer cells in 
the liver, plays an important role in surveillance of tumor metastasis (Takeda et al., 2001).  The apoptotic 
signal of TRAIL is transduced by binding to the death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5), 
which are members of the TNF receptor superfamily.  Both DR4 and DR5 contain a cytoplasmic death 
domain that is required for TRAIL receptor-induced apoptosis.  TRAIL also binds to TRAIL-R3 (DcR1) 
and TRAIL-R4 (DcR2), which act as decoy receptors by inhibiting TRAIL signaling (Pan et al., 1997a; 
Pan et al., 1997b; Sheridan et al., 1997; Walczak et al., 1997; Degli-Esposti et al., 1997a; Degli-Esposti et 
al., 1997b; Marsters et al., 1997).  Unlike DR4 and DR5, DcR1 does not have a cytoplasmic domain and 
DcR2 retains a cytoplasmic fragment containing a truncated form of the consensus death domain motif 
(Pan et al., 1997a).  Recent studies suggest that DRs and DcRs interact through their extracellular 
domains to form homometric and/or heterometric complexes (Lee et al., 2005).  Differential sensitivity 
between normal and tumor cells to TRAIL has been explained by the presence of a high concentration of 
the decoy receptors in normal cells (Gura, 1997; Ashkenazi and Dixit, 1999).  However, this hypothesis 
has been challenged based on the results showing poor correlations between DR4, DR5, and DcR1 
expression and sensitivity to TRAIL-induced apoptosis in normal and cancerous breast cell lines (Keane 
et al., 1999; Leblanc and Ashkenazi, 2003).  This discrepancy indicates that other factors such as death 
inhibitors (FLIP, FAP-1, Bcl-2, Bcl-XL, or IAP) or pro-apoptotic molecules (Bax, Bad, Bim, or Bid) are 
also involved in the differential sensitivity to TRAIL.  TRAIL binding to death receptors is thought to 
result in conformational changes that expose a binding surface for Fas-associated death domain (FADD), 
an adaptor protein (Kischkel et al., 2000; Thomas et al., 2004).  TRAIL triggers apoptosis by recruiting 
the apoptosis initiator procaspase-8 through the adaptor FADD (Bodmer et al., 2000).  Caspase-8 can 
directly activate downstream effector caspases including procaspase-3, -6, and -7 (Cohen, 1997).  
Caspase-8 also cleaves Bid and triggers mitochondrial damage that in turn leads to cytochrome c release 
(Li et al., 1997).  Cytochrome c in the cytoplasm binds to Apaf-1, which then permits recruitment of 
procaspase-9.  Caspase-9 cleaves and activates procaspase-3 (Slee et al., 1999).  Thus, TRAIL produces 
apoptosis.  On the other hand, the PI(3)K-Akt-NF-κB pathway counteracts this effect, because NF-κB 
promotes the expression of certain Bcl-2 family, IAP family and FLIP family proteins: (a) The activation 
of caspases is counteracted by anti-apoptotic molecules of the Bcl-2 family (Bcl-2, Bcl-XL), because the 
Bcl-2 family proteins heterodimerize with pro-apoptotic members of the Bcl-2 family (Bax, Bak) and 
interfere with release of cytochrome c by pore-forming proteins (Bid, Bik) (Gross et al., 1999); (b) 
Members of the inhibitor of apoptosis (IAP) family (c-IAP1, c-IAP2, XIAP) can directly bind and inhibit 
activation of caspases including caspase-3, -7 and -9 (Roy et al., 1997); (c) Previous studies have shown 
that several FLIP splice variants exist on the mRNA level, but two endogenous forms, FLIPL and FLIPS, 
are detected on the protein level (Shu et al., 1997; Tschopp et al., 1998).  Krueger et al. (2001) reported 
that FLIPL and FLIPS prevent caspase-8 activation at different levels of procaspase-8 processing at the 
DISC (death-inducing signaling complex). Thus, the expression of these Bcl-2 family, IAP family, and 
FLIP family proteins is promoted by NF-κB, a family of dimeric transcription factors (Chen et al., 2000).  
The NF-κB family of proteins, including NF-κB1, NF-κB2, RelA, RelB, and c-Rel, can form homo- and 
heterodimers in vitro, except for RelB.  In mammals, the most widely distributed NF-κB is a heterodimer 
composed of p50 and p65 (also called RelA) subunits (Baeuerle and Baltimore, 1989).  NF-κB activity is 
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regulated by the IκB family of proteins which interacts with and sequesters the transcription factor in the 
cytoplasm.  IκB proteins become phosphorylated by the multisubunit IκB kinase (IKK) complex, which 
subsequently targets IκB for ubiquitination and degradation by the 26S proteasome (Zandi and Karin, 
1999).  We investigated the mechanisms by which the HER-2/neu-PI(3)K-Akt-NF-κB signal counteracts 
the extent of TRAIL-induced apoptotic death.   

Previous studies have revealed a link between HER-2/neu signaling and cyclooxygenase-2 (COX-2) 
expression (Vadlamudi et al., 1999; Kiguchi et al., 2001).  Overexpression of HER-2/neu leads to elevated 
levels of COX-2 through a MAPK-dependent pathway (Subbaramaiah et al., 2002).  COX-2 catalyzes the 
formation of prostaglandin E2 (PGE2) which stimulates CYP19 gene expression (Subbaramaiah et al., 
2006).  Cytochrome P450 aromatase (aromatase), a product of the CYP19 gene, catalyzes the synthesis of 
estrogens from androgens (Dubey et al., 2005). Given the significance of estrogen synthesis in hormone-
dependent prostate carcinogenesis (Ho et al., 2006), inhibiting aromatase by quercetin results in decreased 
estrogen biosynthesis and leads to antiestrogenic effects which may be important in prostate cancer. 

 
Body: 

 

HER-2/neu gene expression and TRAIL cytotoxicity 
 To determine a correlation between HER-2/neu gene expression and TRAIL cytotoxicity, human 
prostatic adenocarcinoma LNCaP and DU-145 cells were treated with various concentrations of TRAIL 
(0-1000 ng/ml).  Cell survival was analyzed by the trypan blue exclusion assay (Fig. 1B) and the 
intracellular level of HER-2/neu was measured by western blot analysis (Fig. 1A).  Figure 1 shows that 
LNCaP cells containing a relatively high level of HER-2/neu are resistant to TRAIL.  In contrast, DU-145 
cells containing a relatively low level of HER-2/neu are sensitive to TRAIL.  These results suggest that 
HER-2/neu protects cells from TRAIL-induced cytotoxicity. 

Figure 1.  Expression of HER-2/neu and TRAIL 
sensitivity in LNCaP and DU-145 cells.  A: Cells 
were lysed and subjected to western blot analysis with 
an anti-HER-2/neu antibody.  B: LNCaP ( ) or DU-
145 ( ) cells were exposed to TRAIL (0-1000 ng/ml) 
for 4 hr and survival was analyzed by the trypan blue 
exclusion assay. 

 
Akt activity and TRAIL-induced apoptotic death  
 In this grant proposal, we hypothesize that HER-2/neu-enhanced resistance to TRAIL is mediated 
through the Akt pathway.  Previous studies have shown that phosphorylation of Thr-308 and Ser-473 is 
required for Akt activity.  Data from western blot analysis shows that LNCaP cells have relatively high 
Akt activity (Fig. 2).  In contrast, DU-145 cells have relatively low Akt activity (Fig. 2).  

 

 

Figure 2. Basal Akt activity in LNCaP and 
DU-145 cells.  Lysates containing equal amounts 
of protein (20 μg) were separated by SDS-PAGE 
and immunoblotted with anti-Akt antibody (Akt) 
or anti-phospho-S473 Akt antibody (pAkt).  
Actin, actin is shown as an internal standard. 
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 We examined whether quercetin, which is known to inhibit the HER-2/neu associated PI(3)K-

Akt signal transduction pathway, can sensitize HER-2/neu overexpressing cancers to TRAIL-induced cell 
death.  First, we investigated how quercetin inhibits the HER-2/neu associated PI(3)K-Akt signal 
transduction pathway.  Figure 3 shows that quercetin induced dephosphorylation (inactivation) of Akt, but 
not PI(3)K. 

 

Figure 3.  Effect of quercetin on PI(3)K-Akt signal 
transduction pathway associated kinases. LNCaP 
cells were treated for 4 h with 200 μM quercetin in 
the presence or absence of 50 ng/ml TRAIL, and then 
harvested.  Equal amounts of protein (20 μg) were 
separated by SDS-PAGE and immunoblotted with 
anti-phospho-PI(3)K, anti-PI(3)K, anti-phospho-
PDK-1, anti-PDK-1, anti-phospho(S473)-Akt, anti-
phospho(T308)-Akt, or anti-Akt antibody.  

Next, we investigated the effect of quercetin on TRAIL-induced cytotoxicity.  LNCaP cells were treated 
with TRAIL in the presence or absence of quercetin.   Little or no cytotoxicity was observed with 
quercetin (10-200 μM) alone (Fig. 4A).  TRAIL in combination with quercetin significantly increased 
TRAIL-induced cytotoxicity (Fig. 4B).  TdT-mediated dUTP Nick end labeling (TUNEL) assay showed 
that apoptotic death was enhanced during combined treatment with TRAIL and quercetin (Fig. 4C).   

 

 

 

 

 

 

 

Figure 4.  Effect of quercetin on TRAIL-induced cytotoxicity in human prostate adenocarcinoma 
LNCaP cells.  (A) Cells were treated for 4 h with various concentrations of quercetin (10-200 μM).  (B) 
Cells were treated with various concentrations of TRAIL (10-200 ng/ml) in the presence or absence of 
200 μM quercetin. Cell survival was determined by the trypan blue exclusion assay.  Error bars represent 
standard error of the mean (SEM) from three separate experiments.  (C) Cells were treated for 4 h with 
TRAIL (200 ng/ml) in the presence or absence of 200 μM quercetin.  After treatment, apoptosis was 
detected by the TUNEL assay. Apoptotic cells are indicated by arrows. Con, untreated control; TRAIL, 
200 ng/ml TRAIL; Quercetin, 200 μM quercetin; TRAIL + Quercetin, 200 ng/ml TRAIL in the presence 
of 200 μM quercetin. 

   
Effect of quercetin on TRAIL-induced proteolytic cleavage of PARP and activation of caspases 

    Additional studies were designed to examine whether the combination of quercetin and TRAIL 
treatment in LNCaP cells enhances poly (ADP-ribose) polymerase (PARP) cleavage, the hallmark feature 
of apoptosis.  Previous studies show that PARP (116 kDa) is cleaved yielding a characteristic 85 kDa 
fragment in the presence of TRAIL alone in human prostate adenocarcinoma DU-145 cells (Lee et al., 
2004).  Figure 5 shows that the cleavage of PARP was not observed during treatment with either 

- - +       +       Quercetin (200 μM)
- +       +        - TRAIL (200 ng/ml)

Actin43

Akt60

P-Akt (S473)60
P-Akt (T308)60

P-PI3K

PI3K

85

85

- - +       +       Quercetin (200 μM)
- +       +        - TRAIL (200 ng/ml)

Actin43

Akt60

P-Akt (S473)60
P-Akt (T308)60

P-PI3K

PI3K

85

85

A

0

120

80

60

40

20

C
el

l V
ia

bi
lit

y 
(%

)

100

c   10 50  100 200
Quercetin (μM)

B

0

100

80

60

40

20

C
el

l V
ia

bi
lit

y 
(%

)

- 10 50   200 10 50 200    - TRAIL (ng/ml)     
- - - - + + +  + Quercetin 200μM

C

Con TRAIL 50

Quercetin TRAIL+Quercetin

TRAIL 

A

0

120

80

60

40

20

C
el

l V
ia

bi
lit

y 
(%

)

100

c   10 50  100 200
Quercetin (μM)

A

0

120

80

60

40

20

C
el

l V
ia

bi
lit

y 
(%

)

100

c   10 50  100 200
Quercetin (μM)

0

120

80

60

40

20

C
el

l V
ia

bi
lit

y 
(%

)

100

c   10 50  100 200
Quercetin (μM)

B

0

100

80

60

40

20

C
el

l V
ia

bi
lit

y 
(%

)

- 10 50   200 10 50 200    - TRAIL (ng/ml)     
- - - - + + +  + Quercetin 200μM

B

0

100

80

60

40

20

C
el

l V
ia

bi
lit

y 
(%

)

- 10 50   200 10 50 200    - TRAIL (ng/ml)     
- - - - + + +  + Quercetin 200μM

C

Con TRAIL 50

Quercetin TRAIL+Quercetin

TRAIL 

C

Con TRAIL 50

Quercetin TRAIL+Quercetin

TRAIL 



Quercetin and TRAIL for Prostate Cancer Prevention                                               Yong J. Lee 

  

 

7

quercetin (200 μM) or TRAIL (10-200 ng/ml) alone in LNCaP cells.  The cleavage of PARP was 
observed by combined treatment with TRAIL and quercetin.  The cleavage of PARP was increased by 
increasing concentrations of quercetin (Fig. 5).  Also, Figure 5 demonstrates that TRAIL in combination 
with quercetin promoted activation of caspases.  Quercetin alone did not activate caspases.  Western blot 
analysis shows that procaspase-8 (57 kDa) was cleaved to the intermediate form (43 kDa) and active form 
(18 kDa, data not shown) by treatment with TRAIL.  The combined treatment with TRAIL and quercetin 
enhanced the cleavage (activation) of caspase-8.  The combined treatment of TRAIL and quercetin also 
resulted in facilitation of caspase-9 activation (Fig. 5).  TRAIL in combination with quercetin enhanced 
proteolytic processing of procaspase-9 (46 kDa) into its active form (34 kDa).  The combined treatment 
with TRAIL and quercetin also promoted caspase-3 activation.  Western blot analysis shows that 
procaspase-3 (32 kDa), the precursor form of caspase-3, was cleaved in the presence of TRAIL and 
quercetin.   

Figure 5.  Effect of quercetin on TRAIL-induced 
proteolytic cleavage of PARP and activation of 
caspases in LNCaP cells.  Cells were treated for 4 
h with various concentrations of quercetin (10-200 
μM) in the presence or absence of TRAIL (10-200 
ng/ml).  Cell lysates were subjected to 
immunoblotting for PARP, caspase-8, caspase-9, or 
caspase-3.  Antibody against caspase-8 detects 
inactive form (57 kDa) and cleaved intermediate 
(43 kDa).  Anti-caspase-9 antibody detects  both 
inactive form (46 kDa) and cleaved intermediate 
(34 kDa).  Anti-caspase-3 antibody detects inactive 
form (32 kDa).  Immunoblots of PARP show the 
116 kDa PARP and the 85 kDa apoptosis-related 
cleavage fragment.  Actin was used to confirm the 
amount of protein loaded in each lane.  

 
 We further examined whether the inhibition of Akt alone is responsible for the enhancing effect 

of quercetin on TRAIL cytotoxicity, or whether other parts of the HER-2/neu associated PI(3)K-Akt 
signal pathway are involved.  The effect of quercetin on Akt was compared with the effects of LY294002 
and wortmannin, inhibitors of PI3K.  Figures 6A and 6B show that all these drugs induced 
dephosphorylation of Akt.  These drugs also promoted TRAIL-induced cytotoxicity (Fig. 6C).  These 
results suggest that Akt inactivation (dephosphorylation) is responsible for the quercetin-induced 
enhancement of TRAIL cytotoxicity. 
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Figure 6  Effect of quercetin, LY294002, or wortmannin on kinases (A & B), and TRAIL-induced 
cytotoxicity (C) in LNCaP cells.   (A & B) Cells were treated for 1 h with LY294002 (LY; 2-20 μM), 
wortmannin (Wort; 20-200 nM), or 200 μM quercetin. Equal amounts of protein (20 μg) were separated 
by SDS-PAGE and immunoblotted as described in Materials and Methods.  Actin is shown as an internal 
standard. Con, untreated control cells.  (C) Cells were pretreated with 200 μM quercetin, 50 μM 
LY294002, or 1 μM wortmannin for 30 min and then treated with TRAIL (200 ng/ml) for 4 h.  Cell 
survival was determined by the trypan blue exclusion assay.  Error bars represent standard error of the 
mean (SEM) from three separate experiments.   

Effect of combined treatment with TRAIL and quercetin on the level of TRAIL receptor family and 
anti-apoptotic proteins 
Previous studies demonstrate that increased DR5 levels induced by genotoxic agents (Sheikh et al., 1998; 
Chinnaiyan et al., 2000) or decreased FLIP expression induced by glucose deprivation (Nam et al., 2002) 
is responsible for increasing TRAIL cytotoxicity.  Thus we examined whether changes in the amounts of 
TRAIL receptors and anti-apoptotic proteins are associated with the promotion of apoptosis by TRAIL in 
combination with quercetin.  LNCaP cells were treated with TRAIL (50 ng/ml) in the presence of 
quercetin (10-200 μM) for 4 hr.  Data from western blot analysis reveal that the combined treatment did 
not significantly alter the levels of DR4, DR5, DcR2, FLIPL, FLIPS, Bcl-2, Bcl-xL, cIAP-1, and cIAP-2 
(Fig. 7).  Quercetin alone also did not significantly change the levels of TRAIL receptors and anti-
apoptotic proteins (Fig. 7). 

 

 

 

 

 

 

 

 

Figure 7.  Intracellular levels of TRAIL receptors (A) or anti-apoptotic proteins (B) during 
treatment with TRAIL in the presence or absence of quercetin.  LNCaP cells were treated for 4 
hr with 50 or 200 ng/ml TRAIL in the presence or absence of various concentrations of quercetin 
(10-200 μM).  Equal amounts of protein (20 μg) were separated by SDS-PAGE and immunoblotted 
with anti-DR4, anti-DR5, anti-DcR2, anti-FLIPL, anti-FLIPS, anti-Bcl-2, anti-Bcl-xL, anti-cIAP-1, 
or anti-cIAP-2. Actin was used to confirm the amount of protein loaded in each lane. 

 
Key research accomplishments: 

 
Our experimental results revealed that quercetin effectively promotes TRAIL-induced apoptosis. 

Western blot analysis showed that combined treatment with TRAIL and quercetin did not change the 
levels of TRAIL receptors (DR4, DR5, and DcR2) or anti-apoptotic proteins (FLIP, IAP, and Bcl-2).  
However, quercetin promotes the dephosphorylation of Akt.  Thus, our data reveals that quercetin 
enhances TRAIL-induced cytotoxcity by activating caspases and inhibiting phosphorylation of Akt. 
 
Reportable Outcomes and Conclusions:  
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We conclude that quercetin enhances TRAIL-induced cytotoxicity by inhibiting phosphorylation of 
the PI3K-Akt pathway-associated kinases and phosphatases.  We believe that the outcome of these studies 
provides information to support the development and clinical application of TRAIL in combination with 
quercetin for the treatment of prostate cancer patients. 
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